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The general nature of the flow a t  large distances from a two-dimensional body 
moving uniformly through an unbounded, linearly stratified, non-diffusive 
viscous fluid is considered. The governing equations are linearized using the 
Oseen and Boussinesq approximations, and the boundary conditions at the body 
are replaced by a linearized momentum-integral equation. The solution of this 
linear problem shows a system of jets upstream and a pattern of waves down- 
stream of the body. The effects of viscosity on these lee waves are considered in 
detail. 

1. Introduction 
The flow induced by bodies moving through viscous fluids of uniform density has 

been studied, with varying degrees of success, for over a century. In  1851, Stokes 
published his solution for the slow motion of a sphere in which he neglected 
inertial forces. This solution was not self-consistent in that the neglected inertial 
forces, as computed from the solution, become as large as the retained viscous 
forces far from the sphere. Oseen (1910) later proposed a linear approximation 
for the inertial forces, reworked the problem of the sphere, and found a wake 
behind the body. A year later, Lamb solved the problem of flow past a circular 
cylinder. In  the early thirties, Tollmien (1931) and Goldstein (1933) obtained 
similarity solutions valid far downstream of bodies moving through viscous 
fluids of uniform density and, through momentum considerations, related their 
solutions to the drag. More recently, the papers of Lagerstrom & Cole (1955), 
Kaplun (1957), Kaplun & Lagerstrom (1957), and Proudman & Pearson (1957) 
have pioneered the technique of matching inner and outer expansions of solutions 
of the Navier-Stokes equations. Using this method, several papers have been 
published (Chang 1961; Cox 1965; Shi 1965) concerning flows about variously 
shaped bodies. 

In  contrast with the great effort that has been put forth in the case of homo- 
geneous flows, little appears to have been expended, thus far, in the case of the 
motion of bodies through stratified viscous fluids. In  1959, neglecting inertial 
forces and making the boundary-layer approximation, Long obtained a similarity 
solution valid far upstream of a body moving with constant speed through a 
linearly stratified, non-diffusive viscous fluid; he was unable to obtain a down- 
stream solution under the above approximations. When he later considered the 
diffusive case, Long (1962) found a similarity solution having symmetric stream- 
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lines far upstream and downstream of the body. Martin (1966) considered the 
slow flow of a stratified viscous fluid over a flat plate and has found a similarity 
solution. Recently, Graebel(l967) considered the slow motion of a body through 
a strongly stratified, non-diffusive viscous fluid and found a solution valid far 
upstream of the body and a solution valid near the surface of the body on its 
downstream side; his solutions neglect the inertia of the fluid. His upstream 
solution tends to Long's (1959) asymptotic solution and his downstream 
solution has a damped wave-like nature, with an attentuation constant and a 
wavelength agreeing with those presented here for the special case of zero 
Reynolds number. In  a paper that has just been published, Bretherton (1967) 
considers the initial-value problem of a cylinder moving in an inviscid stratified 
fluid and examines, in detail, the internal gravity waves which produce the flow. 
His solution does not explain the steady-state existence of waves downstream 
of the body. 

This paper considers the general nature of the flow far upstream and down- 
stream of a body moving through a stratified, non-diffusive viscous fluid. Long's 
(1959) solution is found to be valid asymptotically far upstream of the body, 
and this solution is related to the drag of the body; waves, damped by viscosity, 
are found in the lee of the body. As the speed of the body increases, these lee 
waves increase in wavelength and decay more slowly. 

The method of solution developed in the following sections may be easily 
extended to include the effects of diffusion. Very far from the body, where the 
non-diffusive perturbations have become very small, the effects of diffusion 
become relatively important and Long's (1962) similarity solution becomes valid. 
As some details of the diffusive solution remain unclear at this time, we shall not 
discuss it further, and the interested reader is referred to Janowitz (1967). 

2. Formulation of the problem 
We consider a two-dimensional body moving horizontally to the left, with 

constant speed U ,  through an unbounded, linearly stratified, non-diffusive 
viscous fluid. The body is assumed to experience a drag force per unit width, D,  
to the right, no lifting force other than hydrostatic, and no net moment. We 
affix a co-ordinate system to the body as shown in figure 1. In  the following, 
primes denote dimensional variables and tildes dimensional perturbations of the 
dependent variables. 

Far upstream, in the frame of reference of the body, the following conditions 
are assumed tjo exist:? 

(1) 

We note that po is the density of the fluid very far upstream at the level of the 
body and 

p =  lim I g l / p o .  

t For footnote see facing page. 

1 P'+Po(I -PY'),  
u'+ u, 
V'+O. 

x,--  m 
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We assume that the flow is laminar and steady, the fluid has uniform transport 
properties, and that /3 is so small that the Boussinesq approximation is valid. 

We define the perturbations of the dependent variables as follows: 

u’ = u+c, v’ = a, p‘ =p,(l-py’)+p, (2) 

PI = -P0dY’-PYf2/2)+r?. 

We now only consider the flow field at distances from the body so large that the 
velocity perturbations are small compared with the undisturbed speed; the 
Oseen linearization of the convective derivative then applies. The governing 
equations under the above assumptions become 

All perturbations 

aa ag 
O ax ay 

p u-,+,+pg-pv’2a = 0, 

ac aa - + ,  = 0,  
ax! ay 

u-, ag --p0/3a = 0. 
ax 

are assumed to die out infinitely far from the body. The - 
boundary conditions at the body may be replaced by a linearized momentum- 
integral equation as follows. If we integrate the Navier-Stokes equations over 
an appropriate volume containing the body and use the Boussinesq approxima- 
tion and the assumption that all perturbations go to zero a t  infinity, we can show 
that 

(9 +p,C2) dy’I,.=,; - ( g  + p0C2) dy’lZ.=Z: = - D ,  SI:: SI, 
where x; and x’ are any two values of XI to the right and left of the body re- 
spectively. We now make the assumption, which we can verify a posteriori, that 
far upstream and downstream of the body the square of the horizontal velocity 

t The assumption of an upstream density profile which is linear in y‘ over the entire 
range, - a, < y’ < + co, leads to large variation in p’, violating the Boussinesq approxi- 
mation, and to negative values of p‘ for y’ > p-’. Thus, the solution to the linear profile 
problem must be interpreted with care. Consider the following problem. Assume that 
upstream there exists a density profile which is linear in y‘ over the range ly’l < Y ,  and, 
as ly’l -+ co, approaches, slowly, smoothly and monotonically, some positive values of 
p’, say p i ( / )  for y‘ > Y( < - Y ) ,  with 0 < (p‘- -p>)/pL < 1. Further we assume that, in 
the linear range, the fractional density change per unit height, /3, is so small compared 
with one, that /3Y < 1. The solution to the linear profile problem is expected to represent the 
flow field for this physically realistic profile in the range ly’l < Y .  For Iy’l > Y ,  the solu- 
tion to the linear profile problem is of no physical significance. Since viscosity damps the 
perturbations in the vertical direction, most of the significant perturbations occur in the 
range ly’l < Y .  Thus  the solution obtained in this paper should represent the flow of a 
physically realistic density profile over that range of y’ where most of the significant 
perturbations occur. 

27-2 
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perturbation becomes small compared with the pressure perturbation. The 
momentum-integral relation then linearizes to  

We now define a length, I ,  a Reynolds number based on this length, and non- 
dimensionalize as follows : 

1 = (Uvl,8g)*, Re, = Ullv = ( U4/v2,8g)*, 

X’ = xl, y’ = yl ,  .ii = uD/p,  

@ = pD/ l ,  p = pD/g12. 
I (5) 

FIGURE 1. The geometry of the problem. 

The governing equations now become 

au ap 
l a x  ax 

Re ~ + - - V2u = - 6(x) S(y), 

av ap 
5% ay 

Re +-+p-V2v = 0, 

-+- = 0, 
au av 
ax ay 

_-  ap v = 0 ,  
ax 

and the conditions far from the body are 

Condition (4) has been incorporated into the governing equations by placing the 
product of two Dirac delta functions on the right-hand side of (6a). We can verify 
that this condition is satisfied by first integrating (6 a )  with respect t o  y from minus 
to plus infinity; we then integrate with respect to x over an interval containing 
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the origin and recover (4). This method of including the body effects by using 
the delta function was used by Childress (1964). 

Before obtaining the solution of (6), we briefly investigate the significance of 
Re, and examine a dispersion relation which we later show to be of some sig- 
nificance. 

3. The significance of Re, 
We now consider a finite amplitude shear wave propagating horizontally to 

the left, with speed 77, through a linearly stratified, non-diffusive viscous fluid. 
The disturbance is of the form 

u' = 0, p' = -p09(y'-py'2/2), 
(8) 

p' = Po( 1 - py') + P(X', t '), 21' = v"(x', t'). 

The only non-trivial Boussinesq equations are 

a;) 
--pop" = 0. 
atr 

Differentiating (9a )  with respect to time, we obtain 

We assume a disturbance of the form 

v" = v",exp [ik(x' + Ut')] ,  (11) 

where U is a real positive number. For the Boussinesq approximation to be valid, 
we require ,&j0 < 1. From (lo),  we obt'ain the dispersion relation 

-k2U2+~q+vik3U = 0. (12) 

The first term in the above relation represents t,he inertial effect, I ,  the second the 
buoyant effect, B, and the third the viscous effect, V .  We now form a dimension- 
Iess ratio of these effects as follows: 

I2 I 
-- = 041v2pg = Re!. 
V 2 B  

Thus, the cube of the Reynolds number introduced in the preceding section 
corresponds to the square of the product of the internal Froude number with the 
internal Reynolds number of this shear wave. 

Since ( 12) contains significant information affecting the downstream solution, 
as we will show in the next section, we consider it at  length. First, we let 

(14) 6 =  - ik( rrlqpq)~ = - ikl .  

The disturbance ( 1  1)  is then of the form 

v" = v",, exp [ - <Z-l(x' + Ut')], 
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FIGURE 2. A plot of the wavelength of the viscous shear wave, A', versus the 
Reynolds number. The dashed line is the inviscid wavelength. Note : 1 = (Uvlbg )Q and 
Re, == (u&/v%pg)f, 
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FIGURE 3. A plot of the attenuation constant of the viscous shear wave, a', versus the 
Reynolds number. Note: I = ( U v / p g ) f  and Re, = (U4/Ppg)*. 
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and the dispersion relation is 

c3+ Relc2+ 1 = 0. 

This cubic has two complex conjugate roots with positive real parts, which we 
denote as CR -t i f ,  and a negative real root which is unimportant for the current 
discussion. Considering only the wave-like disturbance, we note that the di- 
mensional wavelength, A', is 2n-l/cz and the dimensional attentuation constant, 
a', is CR/l .  The roots of (16) may be extracted analytically, and the results are 
plotted versus Re, in figures 2 and 3 .  We can readily show that, for large Re,. 

A' N 2nl(Re1)* and a' N (2Re;l)-l N Z T ~ ( U A ' ~ / V ) - I .  

If the fluid were non-viscous, the inviscid wavelength, A;, could be written as 

A; = 21~U/(/?g)$ = 2nlU/(&)*l = 27r1(Re1)4. 

This curve is also plotted in figure 2 to provide a measure of the effects of viscosity. 
We see that, a t  low speeds, viscosity increases the wavelength over its inviscid 
value. An observer moving with the wave sees an oncoming velocity, U ,  and the 
wave decaying in the downstream direction. 

We now return to the solution of (6) and to a description of the entire flow 
field. 

4. Solution of the governing equations 
We assume the solution is sufficiently well behaved so that the Fourier trans- 

forms of the dependent variables exist; these transforms are defined by the 
following integrals which are assumed to exist as Cauchy principal values: 

p(x ,  y) = (4s2)-1//+"R(kl,  --a, k,)exp [ ik ,x+ik,y]dk,dk, .  (17 4 

Substituting these expressions into (6), we obtain a system of four simultaneous, 
h e a r  algebraic equations for the transforms which ma3 

1 (Re, ilc, + lc2)  0 ik ,  0 
, 0 (Rel ikl+k2)  ilc, 1 

k.1 k2 0 0  

I 

1 0  I - 1  0 i k ,  

- 1  

0 

0 
- - 

; o  

be written as follows: 

, (18) 
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where k2 = k2, + kg. We solve this system of equations and obtain: 

k; 
k! + iRe,q + 2kgkt - i( 1 - Re,kg) k,  + ki’ @(k], k,) = - 

The singularity of these transforms at  k, = k, = 0 is due to the algebraic decay 
of the upstream solution and to the discontinuity of the ‘ pressure force ’ across the 
origin in the physical plane. However, as we shall see, these singularities do not 
affect the integrals of (1 7). 

We observe from the above transforms and (17) that u(x,  y) and p ( x ,  y) are 
even functions of y, while v(x, y) and p(x, y) are odd functions of this variable. We 
now evaluate the first of (1 7)  in detail. 

Since @(kl, k,) is an even function of k,, we may write 

u(x,  y) = (2n2)-l I,,@,, Re,) cos k,ydk,, (20) 

If we consider k, to be a complex variable, then the path of integration in (21) is 
the real axis of the complex k, plane. We introduce a new complex variable, c, 
We mav then write 
defined by [ =  - ik,. 

where the ci = &(k2, Re,) are the four roots of 

P(5) = C : 4 + R e ~ c 3 - 2 k g C : , + ( l - ~ e , k ~ ) [ + k i  = 0. (23) 

We shall discuss these roots in detail after considering the integration of (22). 
The path of integration of this integral is the imaginary axis of the c-plane. For 
each value of k, f 0, c, and c, have finite positive real parts, and c1 and c4 are 
real, negative, and finite. The situation is shown in figure 4. 

To evaluate IJk,, Re,) by the method of residues, we choose a closed contour 
lying in the c-plane consisting of the imaginary [-axis and a semi-circle centred a t  
the origin, of infinite radius, and lying either in the half-plane CE < 0 or the half- 
plane & > 0. If x < 0, we choose the former path, as the integral along this path 
vanishes; if x > 0, we choose the latter path for the same reason. Using the residue 
theorem, we obtain for x > 0 

j = 1  
i +i 
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124 b )  
kiexp [ - 

and for x < 0 Iu(k,, Re,) = + 277 I; . 
i = 3  n ( 5 d J  

j=1 
j+i 

5, and c4 have finite real parts and These results hold for k, =+ 0. If Ic,  = 0 ,  
Q = 0. Thus 

The right-hand side of this expression can be shown to exist as a Cauchy principal 

value. Hence I,(O,Re,) = 0. 
5, 

FIGURE 4. Contours of integration and the positions of the poles in the complex [-plane. 

We can regard (24) as being valid for all values of k,. Similar results hold for 
Z I ( X ,  y) and p(x, y). The corresponding integral for the pressure is discontinuous, 
though finite at  Ic, = 0;  this is due to the jump in ‘pressure force’ across x = 0. 
However, a finite discontinuity at  one point does not change the value of the 
integral, and so the singularities of the transforms at k, = k, = 0 are unimportant 
as far as our solution is concerned. 

The general nature of the flow can be clarified by the following discussion which 
is based on an analysis of the roots of P(5). 
(a) The roots whose residues contribute to the downstream solution, and 

<,, are found to be complex conjugates, with positive real parts, for 0 6 k, < @, 
where kg is a positive, monotonically decreasing function of Re,. For k, > kg, 
c1 and y2 are real, positive and unequal. We can then write for x > 0 
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where g1 = <1R+i& ( k ,  < w. 
and 

and for x < 0 

(25b)  

Equation (25a) ,  which describes the downstream behaviour, is composed of two 
integrals. The first contains x in the exponent of exp ( - clRx) and sin (&x + 0). 
We might expect this integraI to exhibit an oscillatory behaviour with x, and 
we call this integral the wave-like component. In  the next section, we show that 
this integral does have an oscillatory behaviour. The second integral of (25u)  
contains x in the exponents of exp ( - clx) and exp ( - C,X) .  We expect this integral 
to decay exponentially with x. The upstream solution, as we show in the next 
section, decays algebraically with x. 

( b )  When k,  increases from k:, cl increases monotonically and c, first decreases 
to a minimum value of 4/Re$ at = 2/Re, + 16/Ret and then increases monotonic- 
ally. Since 4/Re? > &(O, Re,) for all Re,, the wave-like component of the solution 
predominates far downstream. 

(c) As k,  increases from zero to k z ,  Clr decreases monotonically to zero. The 
wave-like component is, thus, a superposition of waves whose wave-numbers in 
the x-direction are less than ClI(0, Re,). clR increases monotonically with k ,  in 
this range. Thus, far downstream, only the shortest waves, with wave-numbers 
5 c l I ( O ,  Re,), persist. For small k,, Cl is approximately the complex root of (16), 
since P(<) reduces to this relation when k,  goes to zero. Thus, the information 
given in figures 2 and 3 applies, approximately, far downstream of the body. 

(d )  For a fixed value of k,, as Re, increases, cl and c2 decrease. Thus, because of 
the exponential decay of the integrand of (25a) ,  as Re, increases, the downstream 
perturbation increases. 

( e )  The roots whose residues contribute to the upstream solution, Q and Q, are 
real, negative, and unequal, monotonically decreasing functions of k,. Q goes to 
zero, for all Re,, B-ith k,  as - hi. Thus, the upstream solution has an algebraically 
decaying component, as we shall show in the next section, due to the residue 
of Q. At  k,  = 0, C4(O, Re,) 6 - 1 ;  the maximum occurs when Re, = 0. The up- 
stream component due to the residue of c4 decays at least as fast as exp ( -  1x1) 
and is negligible compared with the other component. 

( f )  For a fixed non-zero value of k,, as Re, iiicreases, Q and c4 become more 
negative; this shows the upstream perturbations decrease with increasing Re,. 

Thus, the downstream behaviour is wave-like with the wavelengths and 
attentuation constants given approximately in figures 2 and 3. With an increase 
in speed, these waves increase in wavelength and decay more slowly. An asymp- 
totic formula for the vertical velocity is derived in the next section. 

Numerical integration of (25b)  shows a system of jets upstream of the body. 
These jets become wider and decay algebraically in the upstream direction. As 
the Reynolds number increases, the upstream jets become weaker and wider. 
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Profiles of the horizontal velocity perturbations are shown in figures 5, 6, and 7 
€or a range of ,Reynolds numbers; u,, is the horizontal velocity perturbation at  
y = 0 for the specified value of x. As we note in the next section, the profile in 
figure 5 for x = - 1000 is the asymptotic profile. From this figure we see that th  
jet centred near y = 20 is more than half the strength of that centred about 
y = 0. The horizontal velocity perturbations at  y = 0 are plotted versus distance 

Y 3' Y 

FIGURE 5. Profiles of the horizontal velocity perturbation for a fixed Reynolds number 
at three stations upstream. These stations are, from left to right, 5 = - 1000, - 100, 
- 10. Also, uAAo = u(z, O), the horizontal velocity perturbation along the z-axis. For this 
figure, we have Re, = 1.0 and U (  - 1000, 0) = - 5.46 x u( - 100, 0) = - 3.03 x 

~ 

U (  - 10, 0) = - 1.65 x lo-'. 

Y Y Y 

FIGURE 6. See caption of figure 5. For t,his figure we have Re, = 10.0 and 
U (  - 1000, 0) = - 5.13 x 10-4, U (  - 100, 0) = - 2.43 x 10-3, 

U (  - 10, 0) = - 8.33 x 10-3. 
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upstream in figure 8, for a range of Reynolds numbers. The dimensional per- 
turbation, C(x‘, y’), is related to the dimensionless values shown in these figures 
through equation (5). In  $5, we obtain formulae for the perturbations which 
hold asymptotically far upstream; these are shown to be identical with Long’s 
similarity solution and are related directly to the drag. 

v Y Y 

FIGURE 7 .  See caption of figure 5. For this figure, we have Re, = 100.0 and 

U( - iooo,o) = - 2.62 x 10-4, u( - 100,o) = - 5.17 x 10-4, U( - 10, 0) = - 9.50 10-1. 

By comparing figures 5 ,  6 and 7 ,  we seethat, as R e ,  increases, the jets at  a fixed x: 
become wider. 

5. The asymptotic formulae 
We first consider the upstream solution. It is clear from the exponential decay 

of the integrand of ( 2 5 b )  that for very large values of 1x1 only the first term con- 
tributes significantly to the integral. Furthermore, since & increases in magnitude 
monotonically with k,, only the contributions for small k,  are significant. For 
small values of k,, we see that 

c3 = - @ - R e , k $ + O ( k ~ ) ,  

P( - k2- Relk$)  = O(@. since 

Approximating the other roots for small k,, and considering values of 1x1 so large 
and values of c so small that 

€4121 B 1 

and Re,s61xl < 1, 
we are able to write 

The requirement on 1x1, which follows from the above two inequalities, is that 
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This leads to the solution 
m 

0 

m 

0 

G(x‘,y’) = -n-l(D/,u)(Uv/Pg)f Ix‘l-’s s2exp( -s4)cos7sds, 

.ii(x’,y‘) = +n-l(D/,u)(Uv/Pg)* /x’l-fS s5exp( -s4)sinysds, 

(28a) 

(28b) 

p(x‘,y‘) = +n-1D(pg/Uv)* exp (-s4)cos7sds, 

where 

and 7 = ( b d ~ ~ ) ~ Y ’ / I X ’ l ~ .  
We can readily show that the above solution is the integral form of Long’s (1959) 
similarity solution with the perturbations related directly to the drag. Long 
obtained his solution by neglecting inertia and making the boundary-layer 
approximation; (28) shows that this procedure is valid far upstream of the body. 
For Re, = 1.0 and 1x1 > 100, the values of u(x, 0)  given by (28a) agree with the 
results of the numerical integration of ( 2 5 b ) ,  and so the curve for Re, = 1.0 in 
figure 8 corresponds to the asymptotic values of u(x,  0). 

We now develop a formula, valid at  high Re,, for the vertical velocity far 
downstream of the body. The integral for the vertical velocity, analogous with 
(25 a) ,  has a wave-like component and a purely exponentially decaying com- 
ponent. Far downstream, the latter is negligible compared with the former, and 
we may write 

x [sin ( ClZx + k,  y + 0) + sin (Clrx - k,y + @I, 

where 6’ = tan-1 ( ___ ,J + tan-l( e&) - tan-l(&) . 
We note that v(x,y) is an odd function of y, and we now consider only y 2 0. 
For large values of x, the arguments of the sinusoids vary rapidly with k,. How- 
ever, the first sinusoid has one value of k, where the argument is stationary. To 
obtain a simple asymptotic result, we make the following restrictions : 

Re, 3 1 and (y’/x’)z < 7P/vPgx’ < 1. 

Using (23), we obtain power series expansions for the various roots in powers of 

We may then approximate the terms in the integrand of the above expression for 
v(x, y) and solve for the value of k, which causes the argument of the sinusoid to 
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be stationary, i.e. its derivative with respect to k,, to  vanish. A straightforward, 
but tedious, application of Kelvin’s principle of stationary phase, as described in 
Sneddon (1951),  then gives as a first approximation: 

The attentuation constant and the wave-number are as given in figures 2 and 3. 
The numerical integration of (25 a), using Simpson’s rule, gives results which 
agree well with those of ( 2 9 )  in the range where the latter is expected to apply. 

‘ ‘ / R e ,  = ‘O0’O 

\ 

-- 1- 

------------ 
@ I  

1 I I I I I I I I I I c  

0 200 400 600 800 1000 
Distance upstream of the body - X  

FIGURE 8. The horizontal velocity perturbation along the x-axis upstream 
of the body for various values of Re,. 

If we attempt to confirm the results of (28) experimentally, we must resolve 
two difficulties. First, the location of the effective force is unknown with respect 
to the body geometry. To overcome this, we may force agreement between ob- 
served and theoretical values of the velocity at one point very far upstream and so 
determine the origin of the far field co-ordinate system. Also, the effects of body 
shape are undetermined. However, if we make observations far from the body, 
in terms of its own dimensions, these effects should be small. Of course, our linear 
theory should apply only in the region so far from the body that 

I.ii.1 < u, 
We can use ( 2 8 a )  to determine the upstream distance where the Oseen approxi- 
mation becomes valid by requiring that 

or 
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6. Summary and conclusions 
Upstream of the body a system of alternating jets exists. These jets decay 

algebraically and become wider in the upstream direction. For a fixed value 
of the drag and a t  a fixed dimensional distance on the x'-axis upstream of the 
body, as the speed of the body increases, the ratio of the velocity perturbation 
to the speed of the body decreases in magnitude; the width of the jets at a fixed 
value of x' increases with speed. The asymptotic solution given in (28) is valid 
far upstream of the body. For low speeds (Re, < l - O ) ,  this solution becomes valid 
close to the body. 

Downstream of the body, a pattern of waves exists; i.e. the streamlines oscillate 
about their equilibrium heights. Far downstream, the information contained in 
figures 2 and 3 applies. These figures show that, as the speed of the body increases, 
the lee waves increase in wavelength and attenuate more slowly. 
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